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Effect of transient condensation of a supercooled gas on the
size distribution of new-phase particles
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The homogeneous nucleation of the liquid phase upon rapid cooling of a gas is consid-
ered in the framework of the Zel’dovich–Frenkel theory, and the time-dependent distribution
function of nuclei in size space and the nucleation rate are determined. It is shown that in
the transient case a certain modification must be made to the basic kinetic equation at high
supersaturations of the gas to allow for the discrete number of molecules in a nucleus. The
form of the distribution function is found in the leading and next-higher approximations in the
reciprocal of the activation barrier. Comparison with a numerical simulation shows that the
results are quite accurate.
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1. Introduction

According to Zel’dovich [1,2], the formation of new-phase nuclei can be described
by a kinetic equation of the Fokker–Planck type in “size space”

∂f

∂t
= −∂f

∂g
, j = −D(g)N(g)

∂

∂g

f

N
. (1)

Hereg is the number of molecules in a nucleus (the “size”),f (g, t) is the nonequilibrium
distribution function,j (g, t) is the flux in size space,D is the diffusion coefficient, and
N is the equilibrium distribution function, which is related to the change in the free
energy� of the system upon formation of a nucleus of a given size:N ∼ exp[−�/(kt)].
The critical sizeg∗ corresponds to the maximum of the function�(g)/(kT ). In the
theory considered here, this maximum value (which is assumed large) determines the
activation barrier of the nucleation process.

At fixed parametersg∗, �∗, etc., the system has a steady equilibrium distribution

f (g) = 1

2
N(g)erfc

(
g − g∗

�

)
(2)
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with a size-independent value of the flux

jss = J = D(g∗)N(g∗)
�
√
π

, � =
(
− 1

2kT

∂2�

∂g2

∣∣∣∣∗
)−1/2

(3)

(� is the width of the critical region).
In reality, changes in the external conditions and depletion of the initial phase by

the nuclei that form cause the level of metastability of the system and, hence, the nu-
cleation process to become time dependent. Transience in the formation of the largest
nuclei can be particularly important, since these nuclei will govern the breakoff of nu-
cleation and the transition of the system to the asymptotic regime [3]. The transient
problem has hitherto been considered mainly from the standpoint of relaxation to the
steady distribution (see review [4]).

In the present study, new-phase nucleation is investigated in the case of a time-
dependent level of metastability of the initial phase; the characteristic times for changes
in the activation barrier here can be comparable to the time for relaxation to the steady
distribution, and so transient effects can be important. Situations of this type can occur
in molecular beams, which are characterized by high rates of cooling [5], in condensed
media [6], and at temperatures near a critical point [7], where the relaxation to the steady
distribution slows down.

As in the steady-state treatment [1], the quantityε = �/g∗ is taken as the small
parameter of the problem. The conditionε � 1 is satisfied if the height�∗/(kT ) of the
activation barrier is so large that its square root(�∗/(kT ))1/2 is also large.

In section 2 we construct asymptotically (inε) exact expressions for the distribution
function and the flux of nuclei in size space. We determine the transient nucleation rate.

In section 3 we consider the nucleation of a liquid phase at high supersaturation of
the gas, when the initial equation applies only in a comparatively small neighborhood
of the critical size. We obtain a kinetic equation which is valid for all sizes below the
critical size and goes over to equation (1) in the critical region, and we construct the time-
dependent solution to the leading and next-higher orders inε. The results are compared
with a numerical simulation.

In appendix we give an asymptotically exact solution for the relaxation to steady
nucleation.

2. Transient distribution of nuclei in size space and the rate of nucleation

In the classical theory of nucleation [8] the nuclei are treated macroscopically, and
the energy� can be divided into surface and volume parts

−�(g)

kT
= g lnS − lg2/3, l = (4π)1/3(3vL)

2/3 σ

kT
. (4)

HereS is the degree of supersaturation of the gas,vL is the molecular volume of the
liquid phase, andσ is the coefficient of surface tension. The basic small parameter of
the problem,ε = �/g∗, is of the form(�∗/(3kT ))−1/2. At moderate gas densities the
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diffusion coefficientD(g) in equation (1) is given asαcβsg, whereαc is the condensation
coefficient andβsg is the frequency of collisions between gas molecules and the nuclear
surfacesg.

If the thermodynamic parameters of the gas (temperature, pressure, etc.) are time
dependent, the coefficients in the expression for the work of formation of a nucleus in (4)
will vary with time. In the leading approximation inq/(kT ), whereq is the heat of the
phase transition per molecule, it is necessary to consider the time derivatives only of
quantities containing lnS, with the result

∂

∂t

�(g)

kT
= g

g∗
∂

∂t

�∗
kT

. (5)

Unlike ε, the parameterq/(kT ) does not play a fundamental role but only streamlines
the calculations somewhat.

We shall show that the function (5), which contains a time derivative of the asymp-
totically large parameterε−2, plays the governing role in the description of the transient
nucleation. As a quantitative measure of the level of transience one can take the quantity

n = −τrel
∂

∂t

�∗
kT

,

where the timeτrel = �2/(2D∗) characterizes the relaxation to the steady distribution
(see appendix).

Before we start on the solution of the problem, let us formulate the basic assump-
tions.

We assume that the characteristic times for changes in the thermodynamic para-
meters of the initial phase that do not exhibit anomalies on crossing the line of phase
equilibrium are much larger thanτrel. However, the characteristic time for changes in
the height of the activation barrier is not assumed to be long compared toτrel and we
accordingly keep the quantityn in the expressions given below.

We transform the initial equation (1) to the new unknown functionv = f/N and
sizeu = g/g∗

1

2
ε2 ∂

∂u

D

D∗
∂v

∂u
+ D

D∗
∂v

∂u

�′

�′′∗
− nvu = τrel

∂v

∂t
+ ε2

2
nu

∂v

∂u
, �′ = ∂�

∂u
. (6)

The boundary conditions on equation (6) are determined from the conditions that
the kinetic and equilibrium distribution functions agree for nuclei of extremely small
sizes [1] and that the total number of nuclei in the system be finite:

v(0, t) = 1, v(u, t)→ 0, u→∞. (7)

Because the coefficients of equation (6) vary little over a timeτrel and the boundary
conditions (7) are independent of time, for nuclei which are not too much larger than
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the critical size a quasisteady size distribution is established which is described by the
equation

ε2 ∂

∂u

D

D∗
∂v

∂u
+ D

D∗
2�′

�′′∗

∂v

∂u
− 2nvu = ε2nu

∂v

∂u
. (8)

The difference from the corresponding steady-state equation is characterized by
the parametern.

We solve equation (8) by the method of matched asymptotic expansions [9].
Outside the critical region,�′ is not small, and the terms proportional toε2 in

equation (8) can be neglected. In this case

ln v = n

∫ u

0
duu

D∗
D

�′′∗
�′

. (9)

Foru→ 1, equation (9) has the asymptotic form

ln v = n ln(1− u)+ nC, (10)

C =
∫ 1

0
du

{
u
D∗
D

�′′∗
�′
− 1

u− 1

}
= 25

12
− ln 3. (11)

Nearu = 1, where the “outer” solution (9) is not valid, we transform to the “inner”
z = (u− 1)/ε. To leading order inε, equation (8) reduces to the equation

∂2v

∂z2
+ 2z

∂v

∂z
− 2nv = 0, (12)

which was considered in [10]. The decaying solution of (12) forz→∞ is of the form

v(z) = 1

2
Ani

n erfc(z), (13)

wherein erfc(z) is the multiple probability integral [11].
The coefficientAn in the last expression is determined from the condition that the

asymptotic value of the inner solution (13) forz → −∞ agree with that of the outer
solution (10) foru→ 1:

An = #(n+ 1)εn exp(nC). (14)

Finally, we write out the expression for the distribution function in terms of the
original variables:

f (g, t) = 1

2
N(g, t)#(n+ 1)

(
�

3kT

)−n/2

exp(nC)in erfc

(
g − g∗

�

)
. (15)

This equation agrees with (2) in the steady-state limitn→ 0.
If the cooling rate of the gas is characterized by the quantityω = −∂ ln T /∂t , then

it is easy to show that

n = 1

λ

ω

αcν
g5/3
∗ , (16)
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whereλ = σν
2/3
L /q (for simple liquidsλ ∼ 1/6, and for water far from the critical

temperatureλ ∼ 1/10); ν ∼ βv
2/3
L is the frequency of intermolecular collisions. It

follows from (16) that the conditionn � 1 can be satisfied even at cooling rates which
are small compared to the intermolecular collision frequency:ω ∼ λαcg

−5/3
∗ ν � ν.

Solution (15) applies forz � 1/ε, or (g − g∗)/g∗ � 1. An estimate of the
derivative∂v/∂t in the region of maximum sizes yields a condition for admissible values
of n:

n� 2
�∗/(kT )

ln[�∗/(kT )] . (17)

A comparison of (17) with the condition of substantial transiencen � 1 implies
that solution (15) has meaning in an asymptotically wide interval of cooling rates.

We have been considering the initial stage of nucleation, when the height of the
activation barrier decreases with time (n > 0). Analogous estimates for the final stage
(n < 0) show that the solution applies only forn > −1; for smallern no quasisteady
regime is established (see appendix). However, in the stagen � −1 an exponentially
small amount of the liquid phase is formed; consequently, the intense nucleation can be
described entirely by solution (15).

Let us consider the flux of nuclei in size space. Nearg∗ we have to leading order
in ln ε

j (g, t) = −D∗N∗
�

exp
(
z2
)∂v
∂z
= J

√
π

2
An exp

(
z2
)
in−1 erfc(z), (18)

where J is the size-independent steady-state value of the flux (3). The function
exp(z2)in−1 erfc(z) for z → ∞ has the asymptotic form(2/

√
π)(2z)−n, whence it fol-

lows for 1� z� 1/ε that

j = JAn(2z)
−n (19)

(the upper bound onz derives from the applicability conditions for equation (12)).
The expressions obtained for the distribution function and flux cannot be used for

“large” nuclei withg − g∗ � g∗. Here, however, the macroscopic character of the be-
havior of the large nuclei is a simplifying circumstance, so that one does not have to
consider equations of type (1) containing a second derivative with respect to the “coor-
dinate” (size). To find the size distribution of the nuclei in this case it is sufficient to
know their rate of formationI and initial sizeg0.

Let us (formally for now) define the rate of nucleationI as the flux atg = g0. The
size distribution of the large nuclei is of the form

f (g, t) = ġ−1j
(
g0, t − τ(g, g0)

)
,

whereτ(g, g0) is the time over which a nucleus grows to sizeg. The ambiguity associ-
ated with the choice ofg0 vanishes if the latter satisfies the conditionsg0 − g∗ � �. In
this case the drift component of the flux is substantially larger than the diffusion compo-
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nent and is given by asymptotic expression (19), which should thus be regarded as the
transient nucleation rateI . In the original variables

I = J#(n+ 1)exp(nC)

(
�

2g∗

)n(
g0 − g∗

�

)−n
. (20)

Unlike the steady nucleation rateJ , equation (20) depends on the initial sizeg0,
which can be chosen arbitrarily in the interval� � g0 − g∗ � g∗; as we have said,
this ambiguity does not affect the observable quantities. We note that in a purely steady-
state treatment [1] the question of the choice of initial size can be answered only to
logarithmic accuracy; here this quantity is uniquely related to the nucleation rate.

It is shown in appendix (see (A.9)) that upon establishment of a steady distribution
the flux remains practically zero during an “incubation” time

ti = τrel

{
ln

2z

ε
− C ′

}
.

According to our assumptions

J exp

(
− nti

τrel

)
= J (t − ti),

and we can write equation (20) in the form

I = J
(
t − ti(g0)

)
exp

{
n
(
C − C ′

)}
#(n+ 1). (21)

Thus, the rate of formation of nuclei of sizeg0 is determined mainly by the steady-
state nucleation rate at the timet − ti(g0). The insignificant (from an asymptotic stand-
point) corrections exp{n(C − C ′)} and#(n+ 1) arise because of the renormalization of
the incubation and relaxation times for a system with a time-dependent level of metasta-
bility. Within the domain of application of the expressions we have obtained, nucleation
rate (21) naturally is smaller than the steady-state valueJ (t). The difference vanishes
for n� 2/ ln(�∗/(kT )).

Formula (21) also applies to the description of nucleation in other physical situ-
ations in which the expressions for the work of formation of a nucleus, the diffusion
coefficient, etc. can be different from the ones considered. The relaxation time here is
given as before by the expressionτrel = �2/2D∗, and the constantC ′ which appears in
the incubation timeti is evaluated from the macroscopic equations for the decomposi-
tion of a nucleus via formula (A.6). Certain differences arise only in the calculation of
C if the expression for∂(�/(kT ))/∂t is more complicated than (5). We note, however,
that relation (5) is typical, since it is the coefficient multiplying the volume term that
primarily determines the level of metastability of the system.
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3. Large supersaturations of the gas: refinement of the solution with allowance
for the discrete number of molecules in a nucleus

The domain of application of the initial equation (1) is restricted to a neighborhood
of width � near the critical size [12]. It is easily verified, for example, that outside this
neighborhood the quantityD∂ lnN/∂g does not correspond to the macroscopic growth
rateġ when the supersaturation is large, lnS � 1. In the steady-state case the domain of
application of equation (1) can be extended to all subcritical sizes, since the solution is
determined by the behavior of the coefficients in (1) specifically nearg∗. In the steady
case, as is clear from the previous discussion, the values of the coefficients for allg < g∗
contribute to the solution, and equation (1) must be modified so that it also holds for
small nuclei withg < g∗ −�.

The change in the kinetic distribution function with allowance for only the domi-
nant processes of condensation and evaporation of a single molecule can be described
by the following system of kinetic equations [1]:

∂f

∂t
= jg − jg+1, jg = Dg−1Ng−1

(
fg−1

Ng−1
− fg

Ng

)
. (22)

Equation (1) follows immediately from (22) upon replacement of the first differ-
ences by first derivatives. Such a replacement, however, is not possible everywhere,
since outside the critical region the equilibrium distribution functionN(g) (and, for
g < g∗ −�, the functionf (g) itself) changes by a quantity of the order of unity when
g is replaced byg ± 1. This circumstance can be taken into account rather simply for
the functionN(g): the finite difference terms should be kept as they are and not re-
placed by derivatives in the expressions which contain only the known functions. To
obtain a correct continuum equation for the kinetic distribution function it is necessary
to transform from the functionf to a new unknown function which varies smoothly in
size space. In the subcritical regiong < g∗, as we see from the solution obtained ear-
lier, v(g, t) = f/N is a smoothly varying function for which equation (22) implies the
equation

∂v

∂t
+ v

∂ lnN

∂t
= ∂

∂g
D

∂v

∂g
+D*

∂v

∂g
− 1

2
D*

∂2v

∂g2
, (23)

where* = 1−Ng−1/Ng (the last term in (23) is retained in order to get the corrections
of orderε).

Equation (23) holds not only in the critical region, where it is practically the same
as equation (1), but also in the region of small sizes, where equation (1) does not apply.

The growth of large nuclei with sizesg � g∗ + �, for which this equation does
not apply, can be described by macroscopic equations withġ = D*. A kinetic equation
which holds forg > g∗ − � and goes over to (1) in the critical region was obtained
in [13]; the discreteness of the variableg was taken into account in [12,14] in a study of
the relaxation to the steady distribution.
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The rest of the calculation is conveniently done in the variablesx = (g/g∗)1/3.
Equation (23) becomes

1

2

(
ε

3

)2
∂2v

∂x2

(
1− 1

2
*

)
+ *

ln S
x2 ∂v

∂x
− nvx5 = τrelx

2 ∂v

∂x
+ ε2

6
x3 ∂v

∂x
n. (24)

In analogy with the previous discussion we find that outside the critical region

ln v = n

∫ x

0
dx x3 ln S

*
. (25)

To leading order inε, the equation for the functionv(z) retains the form (12) near
g∗, an the solution is of the form (13), (14), where

C̃ =
∫ 1

0
dx

(
ln S

*
x3 − 3x2

x3 − 1

)
∼= 25

12
− ln 3+ ln S

8
− (ln S)2

144
. (26)

We note that this solution differs substantially from that obtained in section 1 only at
extremely large supersaturations or at a high level of transience(n ln S ∼ 8).

In taking into account the discrete number of molecules one should, generally
speaking, allow for the higher terms in the asymptotic expansion of the solution inε.
In the outer solution (25), the corrections that arise are of orderε2 and do not have to
be taken into account, since this quantity is extremely small for macroscopic nuclei. On
the other hand, the corrections to the solution in the critical region are of orderε and
must be taken into account for an accurate description of the behavior of the distribution
function nearg∗ (see the comparison with the numerical simulation below).

Nearg∗ we seek a solution of the form

v(z) = v0(z)exp

{
ε

3

v1(z)

v0(z)

}
, z = 3(x − 1)

ε
, (27)

wherev0(z) is the solution of (13) with a renormalized value (corresponding to (26)) of
the constantC.

Substituting (27) into quasisteady equation (24) and keeping terms through orderε,
we obtain a linear inhomogeneous equation forv1(z), from which

2v1(z)

An

=−4n(n+ 1)in+1 erfc(z)

(
1+ ln S

8

)
− 1

2
in−1 erfc(z)

(
1+ n− 1

2
ln S

)

− 1

12
in−3 erfc(z). (28)

For z→−∞ the inner solution of (27), (28) has the asymptotic behavior

v(z) ∼ εn|z|n exp

{
nC̃ − 4

3
n|z|ε

(
1+ ln S

8

)}
,

in which the leading and next-higher orders lnε corresponds to the asymptotic behavior
of solution (25) forx → 1.
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Figure 1.v(g) as a function ofg. v(g) = f/N is a smoothly varying function, wheref is a nonequilibrium
distribution function,N is the equilibrium distribution function, andg is the number of molecules in a

nucleus. Curves 1–4 are explained in the text.

The accuracy of the above solution was illustrated by numerically solving sys-
tem of equations (22) in an expanding gas volume. Here the degree of transience of
the process was characterized by a variablen. Curve 1 in figure 1 was obtained for
n ∼= 1 (n = 1.025); for the example considered, this value corresponded to the follow-
ing values of the parameters:g∗ ∼= 55, lnS ∼= 1.06, ε ∼= 0.32. Curves 2 and 3 show
the leading (13) and the next-higher approximation inε without allowance for the dis-
creteness. Curve 4 shows the solution (27), (28), which takes into account the discrete
number of molecules in a nucleus; we see that this solution practically coincides with
the “exact” solution inside the critical region.

4. Conclusions

1. Transient nucleation of new phase, like steady nucleation, can be described to as-
ymptotic accuracy in the height of the activation barrier.

2. For a time-dependent level of metastability of the initial phase, the transience of the
nucleation process is basically characterized by the quantityn, which specifies the
change in the height of the activation barrier over a timeτrel (τrel is the time for re-
laxation to steady nucleation). Substantial transience(n � 1) can occur even for gas
cooling rates which are extremely small compared to the frequency of intermolecu-
lar collisions.
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For sizes smaller than the critical size or not too much larger, a quasisteady distri-
bution is established which is determined by the instantaneous configuration of the
potential relief and its first time derivative, in the limitn → 0 the expressions ob-
tained for the distribution function and flux correspond to the familiar steady-state
solution of Zel’dovich, equations (2), (3).

3. Under transient conditions the nucleation rate differs from the steady-state rate by a
pre-exponential factor which depends on the choice of the initial size of the incipient
nuclei. However, this ambiguity does not affect the “observable” characteristics of
the process (the distribution function of the large nuclei). By establishing the rela-
tionship between the initial size of a nucleus and the nucleation rate, one can go be-
yond the traditional “logarithmic accuracy” inherent to the purely time-independent
treatment, in which the initial size of the nucleus is strictly undetermined.

4. The discreteness of the number of molecules in a nucleus primarily affects the
macroscopic growth rate of the nucleus. This is reflected in the distribution of nu-
clei in the critical region only in the transient case at high supersaturations of the
gas. In the general case allowance for the discreteness should be accompanied by
another asymptotic expansion in the reciprocal of the activation barrier. Here the
next-higher (after the leading) approximation usually gives sufficient accuracy for
practical purposes.

Appendix. Relaxation to the steady distribution

Let us rewrite the initial equation (1) for a time-independent equilibrium distribu-
tion N(g) in the variablesu = g/g∗ andv = f/N :

ε2 ∂

∂u
D

∂v

∂u
+D

2�′

�′′∗

∂v

∂u
= �2∂v

∂t
. (A.1)

After a Laplace transformation

V (u, p) =
∫ ∞

0
dt exp(−pt)v(u, t)

equation (A.1) reduces to the equation

ε2 d

du
D

dV

du
+D

2�′

�′′∗

dV

du
= �2Vp (A.2)

with the boundary conditionV (0, p) = p−1, which follows from (7). Solving (A.2) in
analogy with (8) by the method of matched asymptotic expansions, we find the outer
solutions(1− u� ε):

V (u, p) = p−1 exp
{−pτ(u)},

τ (u) = −
∫ u

0

du

u̇
, u̇ = − D

kT

∂�

∂g
g−1
∗ ,

(A.3)
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where τ(u) is the decomposition time of a nucleus, and the inner solution(z =
(u− 1)/ε, |z| � 1/ε):

V (z, p) = 1

2
B(p)im erfc(z), m = p

�2

2D∗
. (A.4)

Applying the inverse Laplace transformation to (A.3) gives rise to an obvious result
v(u, t) = 0(t − τ(u)), where0 is the theta (step) function.

From the matching condition for asymptotes (A.4) atz → −∞ and (A.3) for
u→ 1, we find

B(p) = p−1#(m+ 1)exp
(
mC ′

)
εm, C ′ =

∫ 1

0
du

{
2D∗

�2

1

u
− 1

u− 1

}
, (A.5)

which gives

V (z, p) = 1

2

�2

2D∗
εm exp

(
mC ′

)
#(m)im erfc(z). (A.6)

Function (A.6) has a pole atm = 0, corresponding to steady-state solution (1). The
nearest polem = −1 (p = −2D∗/�2) determines the maximum relaxation time

τrel = �2

2D∗
. (A.7)

Let us determine how the steady distribution is established in the above-critical
regionz� 1. Here (A.6) can be replaced by the asymptotic expression

V (z, p) ∼= 1√
π

�2

2D∗
εm exp

(
mC ′

)
#(m)exp

(−z2
)
(2z)−m−1. (A.8)

The poles of the function (A.8) are located at the pointsm = 0,−1,−2, . . . and
have residues (with respect tom) of (−1)−m/(−m)!. Introducing the incubation time

ti = τrel

(
ln

2z

ε
− C ′

)
, (A.9)

we have fort � ti − τrel ln z2

v(z, t) ∼= 1√
π

exp(−z2)

2z

∑ (−1)−m

(−m)! exp

{
m
t − ti(z)

τrel

}
. (A.10)

Formally the sum in (A.10) is defined only for−m � z2 (otherwise asymptotic
expression (A.8) is invalid), but because of the rapid convergence in (A.10) one can
extend the summation to−∞ to get

v(z, t) ∼= 1√
π

exp(−z2)

2z
exp

{
−exp

(
− t − ti

τrel

)}
.



342 Y. Park / Effect of transient condensation

In an analogous way, we get for the flux

j (z, t) ∼= J exp

{
−exp

(
− t − ti(z)

τrel

)}
.

Over a timet < ti the flux is practically zero.
Under transient conditions a function 2nvD∗u is added to (A.1) (see (6)).
In analogy with the previous case we get

Vn(z, p) = 1

2m
τrelε

m+n exp
(
mC ′ + nC

)
#(m+ n+ 1)im+n erfc(z), (A.11)

where the constantC is found in section 2. The pole atm = 0 leads to quasisteady
regime (15), which sets in over a time which is determined by the pole atm = −n− 1:

τrel(n) = τrel

n+ 1
. (A.12)

In the initial stage of nucleation(n > 0) the relaxation time is shorter than the time for
relaxation to the steady distribution, while in the final stage of nucleation(n < 0) it is
longer, and forn � −1 the quasisteady regime discussed in this paper does not arise at
all.
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